Knowledge that will change your world 3rd UAB Metabolomics Workshop June 14-18, 2015 # Introduction to metabolomics research Stephen Barnes, PhD Director, Targeted Metabolomics and Proteomics Laboratory #### Where did metabolomics come from? # Are metabolomics and metabonomics different? ### From nuclear weapons to biology Ralf Schoenheimer David Rittenberg - While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (²H), and later carbon (¹³C) and nitrogen (¹⁵N), to study biochemical pathways - Understanding the pathways of metabolism was born #### Direction of NIH Research 1950-2015 #### **Metabolomics 1950s-60s** emphasis on 1950s-early 1980s determining metabolic Identification and pathways – 20+ Nobel prizes purification of proteins 2014 -"deep" proteomics **1980-1988** Sequencing of reveals the presence of genes - cDNA libraries -400+ proteins that are not orthogonal research encoded by the genome Bloch Lynen Krebs **1988-2000** Sequencing of 2012 Human genome ENCODE the human genome – period project reveals the extent of DNA of non-orthogonal research expression and roles for "junk" DNA, - where did all the genes as well as intergenic proteins go? junk DNA? 2006 First ENCODE project on 1% **2004** Tiling arrays reveal of the human genome reveals RNAs that most of the genome is expressed coming from more than one gene #### Metabolism to metabolomics - Measured with enzymes NAD(P)H absorbance/fluorescence - Studies of glycolytic and the TCA cycle intermediates one at a time - Organic acids, fatty acids and amino acids by GC - Volatile derivatives, Flame lonization Detection - GC-MS started in mid-70s - Open tubular capillary GC gave far higher chromatographic resolution than the packed ¼" ID columns (1975/6) https://d1u1p2xjjiahg3.cloudfront.net/bcb5de3b-6cee-4c92-bb76-aa0c96198806.jpg #### Origins of practical metabolomics #### **Imperial College 1967-1970** The room had 20 of these scanners – data analyzed by a central computer (in 1968) Courtesy of K.R. Mansford, PhD Radio gas-liquid chromatography with digitization of collected data Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime moulds # Metabonomics is a term coined by those pioneering NMR metabolomics ## How NMR became a player - Mid 60s introduction of Fourier transform analysis - Late 70s introduction of superconducting magnets - Early 80s pulse sequences # Pulse sequences in NMR (HetCor) ### **Progress in LC-MS** - Commercial HPLC appeared in the early 1970s to separate thermally stable and unstable molecules - The challenge remained to find a way to get the unstable compounds into the gas phase - Applied to macromolecules (peptides, proteins) as well as metabolites - Thermospray had some initial success - Electrospray ionization and chemical ionization radically changed analysis, allowing compounds to go into the gas phase at atmospheric pressure and room temperature #### **LC-MS** - Suddenly, there were what appeared to be no limits (or very few) to what could be analyzed - Unheard of, <u>robust</u> mass spectrometers came into play - "A reliable mass spectrometer" was considered in 1990 to be an oxymoron ### **Types of LC-MS analysis** Single quadrupole LC-MS analysis LC-time-of-flight (TOF)-MS **FT-ICR MS** **Orbi-trap** Triple quadrupole LC-MS analysis Multiple reaction monitoring (MRM) **Q-TOF** **TripleTOF** **Ion Mobility** # World without gas! PHOTO: BRENDAN SMIALOWSKI/AFP/GETTY IMAGES #### **Metabolomics workflow** ### **Data explosion** ## **Changing times in Computing** - 1950 The Cambridge colleagues of Watson and Crick calculated the structure of DNA by putting data onto punched cards and taking them by train to London for analysis – and to the fog – the "cloud" in 1950s - 1964 Seymour Cray develops the CDC 6600 (1 Mflops) - 1967 I used paper tape to collect data from a radio gas chromatograph and then submitted them via a terminal reader to the CDC 6600 at the University of London ## **Today in Computing** #### On my desk in 2015 - The Apple MacBook Air with 2 quad core Intel i7 processors - Operates at 2.0 GHz - Memory of 8 GB - Access 1.333 GHz - 512 GB Flash memory storage - 10 Gbs Thunderbolt I/O - Also cost ~\$2,000 #### **IBM Blue-Gene** - Parallel processing with 2,048 700 MHz computers operating at 4.733 Tflops - Replaced by Cheaha, in its current configuration it has 48 compute nodes with two 2.66GHz 6-core Intel CPUs per node (576 cores total) - It operates at 6.125 Tflops #### Does the "cloud" present a viable option? Yes, if we can transfer the data to other computers with greater processing power and cheaper long-term storage, but...... Is this really a "safe" solution? ## The Cloud and computing in 2015 - The manufacturers are turning to putting software and your data into the Cloud (assuming you can overcome HIPPA constraints) - In proteomics, they are putting their programs there - SCIEX is using BASESPACE (with Illumina) - You upload your data to an Amazon server - The programs are downloadable Apps - For now, metabolomics uses XCMS - Either online or as a server-based software - Cloud next? # See 2013 and 2014 workshop discussions on computing by Sean Wilkinson http://www.uab.edu/proteomics/metabolomics/workshop/workshop_july_2013.php http://www.uab.edu/proteomics/metabolomics/workshop/workshop june 2014.php # The metabolome is very complex! #### **Great challenges in metabolomics** - The extent of the metabolome - From gaseous hydrogen to earwax - Having complete databases - METLIN has 60,000+ metabolite records, but your problem always creates a need to have more - Current lack of a substantial MSMS database (but it's coming) - Storing and processing TBs/PBs of data - Standards and standard operating procedures - Being able to do the analyses in "real time" # I want to start metabolomics, but who with? Each of these regional centers has a pilot program, typically up to \$50k with annual deadlines in mid-February (last one in 2016) #### **Workflow for metabolomics training** #### Structure of the workshop - Introduction to experimental design - Optimal planning and sample collection - Sample processing/extraction - Primary data collection by NMR, LC-MS and imaging - Introduction to data processing and statistical analysis - Electives: - Advanced data processing; pathway analysis - Advanced sample processing for imaging; ion mobility analysis; MSMS interpretation - Integration of metabolomics and its future ### **Terrific speakers** - Richard Caprioli (Vanderbilt) - Director of the National Imaging Mass Spectrometry Center - Art Edison (U Florida) - Director of SECIM - David Wishart (U Alberta) - Pioneer in the development of metabolomics ### **Returning speakers** Kathleen Stringer, PharmD, U Michigan Wimal Pathmasiri, PhD RTI Intl Xiuxia Du, PhD UNC-Charlotte Rodney Snyder, MS RTI Intl Paul Benton, PhD Scripps Res Inst Shuzhao Li, PhD Emory U #### **UAB** trainers Janusz Kabarowski, PhD Matthew Renfrow, PhD Jeevan Prasain, PhD N. Rama Krishna, PhD **Landon Wilson** Ali Arabshahi D. Ray Moore II **Haley Albright** Ronald Shin, PhD # **Industry Speakers** Rob Mohney Metabolon Jeremiah Tipton SCIEX Roy Martin and Tom Beaty Waters # Thank you – questions?